Tractable Generative Convolutional Arithmetic Circuits
نویسندگان
چکیده
We introduce a generative model, we call Tensorial Mixture Models (TMMs) based on mixtures of basic component distributions over local structures (e.g. patches in an image) where the dependencies between the local-structures are represented by a ”priors tensor” holding the prior probabilities of assigning a component distribution to each local-structure. In their general form, TMMs are intractable as the prior tensor is typically of exponential size. However, when the priors tensor is decomposed it gives rise to an arithmetic circuit which in turn transforms the TMM into a Convolutional Arithmetic Circuit (ConvAC). A ConvAC corresponds to a shallow (single hidden layer) network when the priors tensor is decomposed by a CP (sum of rank-1) approach and corresponds to a deep network when the decomposition follows the Hierarchical Tucker (HT) model. The ConvAC representation of a TMM possesses several attractive properties. First, the inference is tractable and is implemented by a forward pass through a deep network. Second, the architectural design of the model follows the deep networks community design, i.e., the structure of TMMs is determined by just two easily understood factors: size of pooling windows and number of channels. Finally, we demonstrate the effectiveness of our model when tackling the problem of classification with missing data, leveraging TMMs unique ability of tractable marginalization which leads to optimal classifiers regardless of the missingness distribution.
منابع مشابه
Discriminative Structure Learning of Arithmetic Circuits
The biggest limitation of probabilistic graphical models is the complexity of inference, which is often intractable. An appealing alternative is to use tractable probabilistic models, such as arithmetic circuits (ACs) and sum-product networks (SPNs), in which marginal and conditional queries can be answered efficiently. In this paper, we present the first discriminative structure learning algor...
متن کاملConvolutional Rectifier Networks as Generalized Tensor Decompositions
Convolutional rectifier networks, i.e. convolutional neural networks with rectified linear activation and max or average pooling, are the cornerstone of modern deep learning. However, despite their wide use and success, our theoretical understanding of the expressive properties that drive these networks is partial at best. On other hand, we have a much firmer grasp of these issues in the world ...
متن کاملOn the Expressive Efficiency of Sum Product Networks
Sum Product Networks (SPNs) are a recently developed class of deep generative models which compute their associated unnormalized density functions using a special type of arithmetic circuit. When certain sufficient structural conditions are imposed on these circuits (called the decomposability and completeness conditions or D&C conditions), marginal densities and other useful quantities, which ...
متن کاملTensorial Mixture Models
We introduce a generative model, we call Tensorial Mixture Models (TMMs) based on mixtures of basic component distributions over local structures (e.g. patches in an image) where the dependencies between the local-structures are represented by a ”priors tensor” holding the prior probabilities of assigning a component distribution to each local-structure. In their general form, TMMs are intracta...
متن کاملTractable Operations for Arithmetic Circuits of Probabilistic Models
We consider tractable representations of probability distributions and the polytime operations they support. In particular, we consider a recently proposed arithmetic circuit representation, the Probabilistic Sentential Decision Diagram (PSDD). We show that PSDDs support a polytime multiplication operator, while they do not support a polytime operator for summing-out variables. A polytime multi...
متن کامل